Growth, yield and photosynthesis of Panicum maximum and Stylosanthes hamata under elevated CO2.

نویسندگان

  • R K Bhatt
  • M J Baig
  • H S Tiwari
  • Sharmila Roy
چکیده

Plant height, biomass production, assimilatory functions and chlorophyll accumulation of Panicum maximum and Stylosanthes hamata in intercropping systems was influenced significantly under elevated CO2 (600 +/- 50 ppm) in open top chambers (OTCs). The plant height increased by 32.0 and 49.0% over the control in P. maximum and S. hamata respectively in intercropping system under elevated CO2 over open field grown crops (Ca). P. maximum and S. hamata produced 67 and 85% higher fresh and dry biomass respectively under elevated CO2. Rates of photosynthesis and stomatal conductance increased in both the crop species in intercropping systems under elevated CO2. The canopy photosynthesis (photosynthesis x leaf area index) of these crop species increased significantly under elevated CO2 over the open grown crops. The chlorophyll a and b accumulation were also higher in the leaves of both the crop species as grown in OTC with elevated CO2. The increased chlorophyll content, leaf area index and canopy photosynthesis led to higher growth and biomass production in these crop species under elevated CO2. The total carbon sequestration in crop biomass and soils during the three years was 21.53 Mg C/ha under elevated CO2. The data revealed that P. maximum and S. hamata intercropping system is the potential as a sink for the increasing level of CO2 in the atmosphere in the semi-arid tropics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Fully Open-Air [CO2] Elevation on Leaf Photosynthesis and Ultrastructure of Isatis indigotica Fort

Traditional Chinese medicine relies heavily on herbs, yet there is no information on how these herb plants would respond to climate change. In order to gain insight into such response, we studied the effect of elevated [CO2] on Isatis indigotica Fort, one of the most popular Chinese herb plants. The changes in leaf photosynthesis, chlorophyll fluorescence, leaf ultrastructure and biomass yield ...

متن کامل

Future CO2 concentrations, though not warmer temperatures, enhance wheat photosynthesis temperature responses.

The temperature dependence of C3 photosynthesis is known to vary according to the growth environment. Atmospheric CO2 concentration and temperature are predicted to increase with climate change. To test whether long-term growth in elevated CO2 and temperature modifies photosynthesis temperature response, wheat (Triticum aestivum L.) was grown in ambient CO2 (370 micromol mol(-1)) and elevated C...

متن کامل

Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought.

While increasing temperatures and altered soil moisture arising from climate change in the next 50 years are projected to decrease yield of food crops, elevated CO2 concentration ([CO2]) is predicted to enhance yield and offset these detrimental factors. However, C4 photosynthesis is usually saturated at current [CO2] and theoretically should not be stimulated under elevated [CO2]. Nevertheless...

متن کامل

Photosynthesis, Growth and Cell Composition of Spirulina platensis (Arthrospira) Under Elevated Atmospheric CO2 and Nitrogen Supplement

The consequences of the addition of CO2 (1%) in cultures of S. platensis are examined in terms of biomass yield, cell composition and external medium composition. CO2 enrichment was tested under nitrogen saturating and nitrogen limiting conditions. Increasing CO2 levels did not cause any change in maximum growth rate while it decreased maximum biomass yield. Protein and pigments were decreased ...

متن کامل

Responses of field - grown soybean ( cv . Essex ) to elevated S O 2 under two atmospheric CO 2 concentrations Edward

The objective of this research was to determine the effects of elevated concentrations of carbon dioxide (CO2) and sulfur dioxide (SO2) on field-grown soybean. Soybeans (Glycine max L. Merr. cv. "Essex) were grown a full-season in open-top field chambers exposed to either ambient (350 #l L -j) or elevated CO2 (500 #l L -j) levels under two levels of SO2 (0.00 and 0.12 #l L-t). Enriched CO2, wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of environmental biology

دوره 31 4  شماره 

صفحات  -

تاریخ انتشار 2010